

Treatment experience of industrial wastewater from rendering and bio-digestion industry

Arnt Vlaardingerbroek

November 8th, 2023

Introduction Darling Ingredients

Introduction Darling Ingredients

Location Ecoson, Rendac, Sonac (ERS) Son (Netherlands)

Industrial wastewater treatment

Treatment task

A very high treatment efficiency is needed to comply with the discharge limits!

Key components to achieve the treatment results

Treatment step – Anaerobic treatment

Key numbers

- 2 anaerobic ICC reactors
 - 1st reactor since 2013 in operation
 - 2nd reactor since 2021 in operation
- Limited to no sludge production
- COD load 8-12 kg/m³.d
- NH_4 -N concentration $\pm 1,800$ mg/l
- COD removal 65-70%
- Methane concentration 90% CH₄
- H_2S biogas 4,000 8,000 ppm
- Thiopaq for H₂S treatment

Savings compare to classical aeration

- Less sludge production (-75%)
- Energy production instead of consumption (+50%)
- Less external carbon (due to low COD/N ratio)

Treatment step – Anaerobic treatment

Treatment step - Intermediate aeration

Key numbers

No biological sludge recirculation

Hydraulic retention time ± 9 hour

• COD removal 15-20%

• P removal 70% (with FeCl3)

• Sulfide removal 100% (goal)

 Robust aeration system and reliable oxygen sensors is very important

Treatment step – Anammox treatment

Key numbers

Since 2013 operational

• NH_4 -N load ± 1.5 -2 kg N/m³.d

• NH_4 -N removal $\pm 90-95\%$

Limited sludge production

Completely automated process

Stable treatment process

Adjustment to original design

- In 2018 (after 5 years) covered due to legionella.
- Screen installed on effluent to capture Anammox granules (2018)
- New aeration grid (2018)
- More cooling capacity

Treatment step – Anammox treatment

Treatment step - Aeration tank and MBR

Key numbers aeration tank

- Classical nitrification/denitrification process
- Bigger dentification volume needed due to Nitrate from Anammox process

COD load
0.15 kg/Kg MLVSS.d

• TKN 25 g/kg MLVSS.d

Surface aeration

Fully automated

Key numbers MBR

- 3x ZeeWeed/LEAP MBR (UF)
- Average net flux 8-10 lmh
- Every 4-5 years membrane replacement

Both systems are covered due to legionella.

COD and Nitrogen removal per treatment step

Take away messages

The combined Anaerobic-Anammox-Aerobic treatment system for rendering and bio-digestion wastewater for ERS Son

- Has proven to be in the long run a robust and reliable system.
- Is a more complex treatment process and need closer follow up (well trained people).
- Gives very high treatment results.
- Can give a risk on Legionella growth and thereby mitigation actions are needed.

If the combined Anaerobic-Anammox-Aerobic process is compared with a classical aeration process for this type of influent:

- A much smaller footprint is needed (-40-50%)
- Gives a net energy production (+50%)
- Produce less sludge (-75%)

